[数学学习]对数函数求导:(Inx)=1/x(ln为自然对数),(logax)=x^(-1)/lna(a0且a不等于1)。 1 、对数函数的导数公式 一般地,如果a(a0,且a1)的b次幂等于N,那么数b叫做以a为底N的对数,记作logaN=b,其中a叫做
对数函数比较大小的口诀为:比较函数别着急,对数底数比一比,相同则看单调性,真同最好则换底。俩都不同没关系,中间值来帮助你,1与0看好不好,肯定马上觉容易。
比较函数别着急,对数底数比一比,相同则看单调性,真同最好则换底。
俩都不同没关系,中间值来帮助你,1与0看好不好,肯定马上觉容易。
1、单调性方法,如果是底数一样可以用此方法,底数大于一,函数单增,指数越大,值越大,底数大于零小于一,函数单减,指数越小,值越大。对于对数函数,也是如此。
对于指数函数,如果指数相同,底数不同,实质上应用的是幂函数的单调性。
对于对数函数,如果真数相同,底数不同,如果底数都大于一,那么,告诉你一个规律,对数函数的图像,在x轴以上底数小的在上面,底数大的在下面,在X轴以下相反。这样,画出图像,竖着画一条平行于Y轴的线,就一目了然了。其实,总结一下的话,就是真数相同,底数大于一,底数越小,对数值越大。相反,底数小于一,在x轴以上底数小的在下面,底数大的在上面。
2、对于底数不同,但是真数相同的,可以很快的化同底。举个例子,比如log2.5和log7.5,log2.5=1/log5.2,log7.5=1/log5.7,因为log5.7>log 5.2,所以1/log5.7<1/log5.2,即log7.5<log2.5。
3、找中间值法,一般是对于对数函数而言的,先看正负,若一正一负,自然好,比如lg2和lg0.5.
若为同号,就和1比,如lg8(<1)和lg12(>1)
4、有时可以先化简再比较,原则是化为同底数,什么样的对数可以化为同底?这里不要使用换底公式的话,一般是底数或真数同为某个数的幂次才行。