积分中值定理的证明

2021-08-20 21:56 数学学习

积分中值定理的证明:设f(x)在[a,b]上连续,且最大值为M,最小值为m,最大值和最小值可相等。由估值定理及连续函数的介值定理可证明积分中值定理。

积分中值定理的证明

积分中值定理的证明

积分中值定理的证明

什么叫定积分中值定理

如果函数f(x)在闭区间[a,b]上连续,则在积分区间[a,b]上至少存在一个点ξ,使∫abf(x)dx=f(ξ)(b-a).(a≤ξ≤b)。

相关文章
推荐内容
凑十法怎么教孩子?凑十歌轻松搞定加减法

凑十法怎么教孩子?凑十歌轻松搞定加减法

[数学学习]简单的数学计算是幼升小孩子必备的能力之一,由于学龄前宝宝还没有建立起数的概念,因此对数学的加减法学习比较困难。 幼儿学习加减法,有一个循序渐进的过程,家长不可以操之过急,

小学数学解决问题的六大基本策略

小学数学解决问题的六大基本策略

[数学学习]数学一直都是很多学生最怕的一门学科,不少家长都反映,学习数学太难了。 小学数学的学习决定着孩子将来的学习生涯,所以作为家长我们需要还孩子提供最适合的学习方法,帮助他们提高

小学数学“时间+长度+符号”大全

小学数学“时间+长度+符号”大全

[数学学习]小学数学相对来说是比较简单的,在这个学习阶段,孩子需要熟练掌握一些基本的知识,比如: 时间的概念、长度和符号的认识 。要想学好小学数学,首先要学会思考,思考是数学学习方法的